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Recent quantum dynamical calculations have shown that HO2 dissociates via isolated resonances, which have
a distribution of rate constants that is statistical state-specific and well-described by the Porter-ThomasPE(k)
distribution. In the work presented here, thisPE(k) distribution is incorporated into RRKM theory to see how
statistical fluctuations in state-specific rate constants affect the collision-averaged chemical activation rate
constantk(ω, E) and the Lindemann-Hinshelwood thermal rate constantkuni(ω, T) for HO2 dissociation.
Both active and adiabatic treatments are considered for theK quantum number. The calculations suggest the
effect of statistical state specificity should be detectable in measurements ofk(ω, E) andkuni(ω, T).

I. Introduction

The collision-averaged unimolecular dissociation of a mon-
oenergetically excited molecule in a chemical activation experi-
ment may be interpreted by the mechanism1

where the unimolecular rate constant is given by1

According to RRKM theory,2,3 the dissociation of monoener-
getically excited molecules is random with exponential decay,
so thatk(ω, E) equals the RRKM rate constantk(E). However,
unimolecular dissociation is state-specific at the microscopic
level,3-6 occurring via isolated3-9 or overlapping resonances10-13

so that there are fluctuations14 in state-specific rate constants
within the energy intervalEf E+ dE. As a result,k(ω, E) in
eq 1 is pressure-dependent.15,16 States with large rate constants
are more likely to contribute to dissociation at high pressures,
while all states contribute equally in the low-pressure limit.
If the resonance states undergoing unimolecular decomposi-

tion have random wave functions, the unimolecular decomposi-
tion may be calledstatistical state-specific.3,6 For this situation
the resonance wave functions will be projected randomly onto
any zero-order basis and the distribution of state-specific rate
constants will be as statistical as possible.8 If these state-specific
rate constants form a continuous distribution within the energy
intervalEf E+ dE, it has been argued7,17 that the probability
of a particulark is given by the Porter-Thomas distribution18

wherekh is the average state-specific rate constant

andν is the “effective number of decay channels”. For large
ν, PE(k) approaches a delta function peaked aroundkh. Thus,
there are no fluctuations in the state-specific rate constants and
exponential decay within the energy intervalE f E + dE
results, as predicted by RRKM theory.
When thisPE(k) is incorporated into the mechanism in eq

1,16 it is found thatk(ω, E) has very simple forms in the high
pressureω f ∞ and low pressureω f 0 limits. For theω f
∞ limit, k(ω, E) is independent ofν and equalskh. At theω f
0 limit, k(ω, E) depends upon the value ofν. It equals zero for
ν of 1 and 2, and equals [(ν - 2)/ν] kh for ν > 2 and finite. The
latter value is the same as the value ofk for the maximum in
P(k)whenν > 2 and finite. Thus, the pressure dependence of
k(ω, E) becomes negligible asν becomes large.
The monoenergetic unimolecular rate constantkuni(ω, E) in

the Lindemann-Hinshelwood mechanism for thermal unimo-
lecular decomposition is given by16

and is related tok(ω, E) in eq 2 by6

This relationship is valid whether or not there are fluctuations
in the state-specific rate constants within the energy intervalE
f E + dE. If there are fluctuations, e.g., given byPE(k) in eq
3, kuni(ω, E) may be expressed as19

Miller19 has shown that there is a substantial differences between
kuni(ω, E) curves calculated for smallν and forν f ∞ which is
the RRKM limit. Averaging overE gives the Lindemann-
Hinshelwood thermal unimolecular rate constant6
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where F(E) is the density of states for the reactant’s active
degrees of freedom andQ is the reactant’s partition function.
Polik et al.8 and Miller et al.20 have related the Porter-

ThomasPE(k) to RRKM theory and find thatkh is the RRKM
rate constantk(E) and, if quantum mechanical tunneling is
unimportant,ν equalsN‡(E), the transition-state sum of states.
With these prescriptions it is straightforward to use the Porter-
ThomasPE(k) and to include fluctuations in statistical state-
specific rate constants when calculatingk(ω, E) andkuni(ω, T).
In recent research Schinke and co-workers21-23 performed

quantum dynamical calculations for HO2 dissociation, i.e.,

and showed that the wave functions for the resonance states
have random characteristics. The calculated rate constants for
the resonances appear to be statistical state-specific and in accord
with the Porter-ThomasPE(k) distribution.23 Reaction 9 has
been the focus of many previous experimental29-43 and
theoretical21-23,25-28,44-46 studies and is a prime candidate for
determining how statistical state specificity affects the unimo-
lecular rate constantsk(ω, E) andkuni(ω, T). This is the focus
of the work presented here, which considers whether statistical
state specificity can be observed in experimental measurements
of collision- and energy-averaged rate constants for HO2

dissociation. The DMBE IV potential energy function of
Pastrana et al.,24 used in previous theoretical studies21-23,25-28

of HO2 dissociation, is also used here.

II. RRKM Calculations

Calculations are needed to determine the RRKM rate constant,
which equals the average rate constant of thePE(k) distribution,
and ν, which equals the transition-state sum of states. Both
HO2 and the dissociation transition state are treated as “almost
symmetric top” rigid rotors, so that their rotational energy levels
are given by47

whereIa ≈ Ib * Ic are the moments of inertia. The quantum
numberJ is for the total angular momentum, andK represents
the projection ofJ onto the symmetry axis.
The quantum numberKmay be treated as either anadiabatic

or actiVedegree of freedom.48,49 Though mixed adiabatic/active
models are possible,49 in this study theK quantum number is
treated the same for both HO2 and the transition state, i.e., either
as adiabatic or active. For the adiabatic model theK quantum
number is assumed to be conserved during the dissociation
process, and the density of states for HO2 and the sum of states
for the transition state are

where E0 is the unimolecular threshold. The RRKM rate
constant for this model is then

For theK-active model the density and sum of states only

depend onE andJ and are given by

so that the RRKM rate constant is

An important effect of makingK active is to increase the
transition-state sum of states in comparison to theK-adiabatic
model.
To calculate the density of states, sum of states, and RRKM

rate constants requires knowing the vibrational frequencies and
principal moments of inertia for HO2 and the transition state,
and the unimolecular dissociation thresholdE0. The vibrational
frequencies and moments of inertia for the DMBE IV potential
used here are listed in Table 1 of ref 25. The thresholdE0 for
the DMBE IV potential is 45.45 kcal/mol.

III. Effect of Statistical State Specificity on the HO2

Collision- and Energy-Averaged Unimolecular Rate
Constants

A. Collision-Averaged Chemical Activation Rate Con-
stant. As discussed in the Introduction, if there are fluctuations
in the state-specific rate constants within the energy intervalE
f E + dE, the chemical activation rate constantk(ω,E) in eq
2 is pressure-dependent. For statistical state specificity described
by the Porter-Thomas distributionPE(k), k(ω,E) equalskh in
the high-pressure limit.16 In contrast, in the low-pressure limit
with ν > 2 and finite, the rate constant is smaller and equals
[(ν - 2)/ν] kh.16 Here we consider the range of energy and
angular momentum for whichk(ω,E) for HO2 dissociation varies
by 20% or more between the high- and low-pressure limits.
This will occur if ν e 10. Following Polik et al.8,20ν is equated
to the transition-state sum of states.
For J ) 0, the sum of statesN‡(E) becomes equal to 10 atE

of 51.6 kcal/mol. SinceE0 ) 45.4 kcal/mol, there is a 6.2 kcal/
mol range of energies in which thek(ω, E) in eq 2 varies by at
least 20%.
For theK-active model, withJ > 0, there are two properties

that affect the transition-state sum of states. First, increasingJ
increases the rotational energy, which decreases the energy
available for vibration. This has the effect of decreasing the
sum of states. However, the densities of states for all theK
levels are summed withK active, which increases the sum of
states. For dissociation of an almost prolate symmetric top like
HO2, which of these two effects is more important depends on
the value ofJ. For representativeJ values of 27, 49, 69, 98,
and 120 for temperatures of 300, 1000, 2000, 4000, and 6000
K, respectively,50 ν ) N‡(E, J) becomes equal to 11 [i.e., due
to symmetry forK and-K, there is no 10 forN‡(E, J)] at E -
E0 of 0.73, 2.16, 4.15, 8.21, and 12.2 kcal/mol. Thus, increasing
J from zero first decreases and then increases the range of energy
for which there is a substantial change ink(ω,E) between the
high- and low-pressure limits.
To obtain a value forν ) N‡(E, J, K) of 10 whenK equals

J for theK-adiabatic model, much higher values of energy are
required than those given above for theK-active model. ForK
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) J of 27, 49, 69, 98, and 120,ν becomes equal to 10 at the
respective energiesE - E0 of 9.8, 18.1, 29.8, 53.7, and 77.4
kcal/mol. If J is maintained at this value, but representative
values ofK are chosen for the temperatures of 300, 1000, 2000,
4000, and 6000 K,51 which are 19, 35, 49, 69, and 85,
respectively, the energiesE - E0 at whichN‡(E, J, K) equals
10 are lower and are, respectively, 8.3, 13.3, 20.1, 33.8, and
47.9 kcal/mol. The energies are even lower and equal 6.8, 8.2,
10.2, 14.3, and 18.3, respectively, for the same set of temper-
atures ifK equals zero.
The above examples illustrate that, regardless of whether the

K-active orK-adiabatic model is appropriate for HO2 decom-
position, there is a broad range of energy and angular momentum
for which statistical state specificity should be experimentally
detectable in the monoenergetic pressure-dependent chemical
activation rate constantk(ω,E). As discussed previously,15 k-
(ω,E) is much less sensitive toPE(k) than are other kinetic
properties such as the time-dependent population of monoen-
ergetically excited molecules in the absence of collisions.
However, with careful experiments it should be possible to
measure changes ink(ω,E) versus pressure as a result of the
fluctuations inPE(k).
B. Pressure- and Temperature-Dependent Lindemann-

Hinshelwood Thermal Rate Constant. It is also of interest
to determine the sensitivity of the Lindemann-Hinshelwood
rate constantkuni(ω, T) in eq 8 to statistical state specificity for
HO2 dissociation. To calculatekuni(ω, T) it is useful to write
kuni(ω, E) in eq 7 as19

wherex ) zν/2, z ) k/kh, λ ) ω/kh, andkh is the average rate
constant for the Porter-Thomas distributionPE(k). The expo-
nential and logarithmic functions in the lower line of eq 17 were
used to prevent overflow errors whenν gets large.
The notation in eq 17 is incomplete in that it does not

explicitly include angular momentum. For theK-active model,
kuni(ω, E) becomeskuni(ω, E, J), kh is the RRKM rate constant
k(E, J) in eq 16,ν equalsN‡(E, J) in eq 15, andkuni(ω, E, J)/kh
in eq 17 may be expressed asIP-T(ω, E, J), the Porter-Thomas
integral overk. The thermal rate constantkuni(ω, T) may then
be written as

For theK-adiabatic model,kuni(ω, E) in eq 17 becomeskuni(ω,
E, J, K), kh is the RRKM rate constantk(E, J, K) in eq 13,ν
equalsN‡(E, J, K) in eq 12, andkuni(ω, E, J, K)/kh may be
expressed asIP-T(ω, E, J, K). The rate constantkuni(ω, T) for
theK-adiabatic model may then be expressed as

Equations 18 and 19 were used to calculatekuni(ω, T) for the
K-active andK-adiabatic models. The collision frequencyω
is calculated using the same procedure described in ref 25.
The first set of calculations is forJ ) 0 and involves a

comparison ofkuni(ω, T) calculated with (1) the standard RRKM
protocol with exponential decay for each energy intervalE f
E+ dE and (2) the Porter-Thomas distribution of state-specific
rate constants within the energy intervalE f E + dE. The
difference between the two sets of rate constants decreases as
the temperature is increased, and results forT of 100 and 300
K are plotted in Figure 1. The maximum difference between
the two curves is 31% at 100 K and 1× 104 Torr and 29% at
300 K and 5× 104 Torr. These plots also show that including
a distribution of state-specific rate constants only affectskuni-
(ω, T) at intermediate pressures. Equations 6-8 show that this
result is expected. In the second-order low-pressure limit,kuni-
(ω, T) is proportional toω and the Boltzmann-averaged density
of states of reacting molecule.2 At high pressures it is only the
average rate constantkh for each energy interval which contrib-
utes tokuni(ω, T).19
The difference between the standard RRKMkuni(ω, T) curve

and the one which includes the effect ofPE(k) increases as the
temperature is decreased because reaction at low energies make
more important contributions to the rate at low temperatures.
As the energy decreases, the average rate constantskh, given by
RRKM theory, decrease since the transition-state sums of states
become smaller. This sum of states equalsν, which determines

Figure 1. kuni(ω, T) curves at (a) 100 K and (b) 300 K withJ ) 0:
(- - -), standard RRKM theory; (s), RRKM theory with the Porter-
ThomasPE(k) distribution. Including a Porter-Thomas distribution of
rate constants affectskuni(ω, T) at intermediate pressures. See text for
discussion.
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the width of thePE(k) distribution. Thus, thePE(k) distributions
contributing tokuni(ω, T) broaden as the temperature is lowered
and the difference with standard RRKM increases. At a high
temperature of 6000 K there is no detectable difference between
the standard RRKMkuni(ω, T) curve and the one calculated with
thePE(k) distribution.
Plots of thekuni(ω, T) curves calculated at 100 and 300 K

with the active and adiabatic treatments ofK are given in Figure
2. The differences between the standard RRKMkuni(ω, T) curve
and the one which includes thePE(k) distribution is much
smaller for theK-active model than for theK-adiabatic model.
This is because the transition-state sum of states and, thus,ν
are much larger for theK-active model. TheK-adiabatic model
and theJ ) 0 calculations, shown in Figure 1, give similar
differences between thekuni(ω, T) curves determined from
standard RRKM theory and that withPE(k) included.
At the high-pressure limit theK-active andK-adiabatic models

give the same unimolecular rate constant, as discussed previ-
ously.49 This arises from the use of nonvariational transition
state in this study. However, in the low-pressure limit the two
models give different rate constants, since the rate becomes
directly proportional to the number of reactive states of the
molecule which can evolve to the states at the transition state.49

This number of states is much smaller for the adiabatic model.
TheK-adiabatic model gives a rate constant which is 2.3 and
2.1 times smaller, respectively, at 100 and 300 K.
The different theoretical models give similarkuni(ω, T) curves

as the temperature is increased. This is shown in Figure 3,
where the maximum percent difference ([k(bigger)- k(smaller)]/
k(bigger)× 100) between twokuni(ω, T) curves is plotted versus
temperature. A comparison is made between the standard
RRKM and RRKM withPE(k) curves for theK-adiabatic model,
the same comparison is made for theK-active model, and the
RRKM with PE(k) curves are compared for theK-active and
K-adiabatic models. The maximum difference between the latter
two curves occurs in the low-pressure limit and varies from a
factor of 2.3 at 100 K to near agreement at 4000 K. The
maximum difference between the standard RRKM and RRKM
with PE(k) curves for theK-adiabatic model and for theK-active
model occurs at a different pressure as the temperature is
changed. For example, for theK-adiabatic model the maximum
difference between the two curves smoothly increases from a

pressure of 1× 104 to 1 × 106 Torr as the temperature is
increased from 100 to 6000 K. The difference between the
standard RRKM and RRKM withPE(k) curves is much smaller
for theK-adiabatic model for reasons stated above.

IV. Summary

Recent quantum dynamical calculations have shown that HO2

decomposes via isolated resonances that have wave functions
with random attributes, indicative of chaos.21-23,27 This work
has suggested that at the microscopic level the unimolecular
dissociation of HO2 is statistical state-specific,6 with fluctuations
in the resonance rate constants well-described by the Porter-
Thomas18 PE(k) distribution. In the work presented here this
PE(k) distribution has been incorporated into standard RRKM
theory to determine how random fluctuations in the HO2 f H
+ O2 state-specific rate constants affect the HO2 collision-
averaged chemical activation rate constantk(ω, E) and the
Lindemann-Hinshelwood thermal unimolecular rate constant
kuni(ω, T). Both active and adiabatic models are used to describe
theK quantum number for HO2 and the transition state. There
is considerable interest in determining which of these models
is more appropriate for unimolecular reactions.52,53 The fol-
lowing are the major findings of this study.
(1) Including thePE(k) distribution causesk(ω, E) to decrease

from the RRKM value at high pressure to (ν -2)/ν times the
RRKM rate constant at low pressure. The termν is the effective
number of decay channels and is equated to the sum of states
at the transition state. There is a broad range of energies and
angular momentum for which the pressure dependence ofk(ω,
E) should be measurable.
(2) IncludingPE(k) only affectskuni(ω, T) at intermediate

pressure, since it does not affectkuni(ω, T) in either the low- or
high-pressure limit. The effect ofPE(k) increases as the
temperature is decreased, since the width of thePE(k) contribut-
ing tokuni(ω, T) increases as the temperature is decreased. The
effect ofPE(k) should be detectable inkuni(ω, T) curves measured
at low temperatures. One way to probe for fluctuations in the
underlying state specific rate constants from a measurement of
kuni(ω, T) is to compare the experimentalkuni(ω, T) with the
prediction of standard RRKM theory. If there are fluctuations,
the difference between experiment and standard RRKM theory
will increase with decrease in temperature.
(3) In the low-pressure limit there is an appreciable difference

between thekuni(ω, T) curves calculated with the active and

Figure 2. Same as Figure 1, except that a thermal distribution is
included forJ and bothK-active andK-adiabatic models are considered.
For theK-active model (- - -) there is only a small difference between
the standard RRKM calculation and the one with thePE(k) distribution.
For theK-adiabatic model, a difference is observed between (- - -)
standard RRKM and (s) RRKM with thePE(k) distribution. See text
for discussion.

Figure 3. Maximum percent difference between twokuni(ω, T)
curves: (- - -), standard RRKM and RRKM withPE(k) curves for
the K-active model; (- - -), standard RRKM and RRKM withPE(k)
curves for theK-adiabatic model; (s), RRKM with PE(k) curves for
theK-adiabatic andK-active models.
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adiabatic models for theK quantum number. This difference
decreases as the temperature increases. For example, at 100
K, the kuni(ω, T) with K-active is 2.3 times larger, while it is
only 11% larger at 4000 K.
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